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One of natural combinations of Kripke complete modal logics is the product, an 
operation that has been extensively investigated over the last 15 years. In this paper 
we consider its analogue for arbitrary modal logics: to this end, we use product-
like constructions on general frames and modal algebras. This operation was first 
introduced by Y. Hasimoto in 2000; however, his paper remained unnoticed until 
recently. In the present paper we quote some important Hasimoto’s results, and 
reconstruct the product operation in an algebraic setting: the Boolean part of the 
resulting modal algebra is exactly the tensor product of original algebras (regarded 
as Boolean rings). Also, we propose a filtration technique for Kripke models based 
on tensor products and obtain some decidability results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Products were introduced in the 1970s as a natural type of combined modal logics. They arise in different 
areas of pure and applied logic – spatial reasoning, multi-agent systems, quantified modal and intuitionistic 
logics etc. The theory of products was systematized and essentially developed first in the paper [3] and later 
in the monograph [4]; during the past 10 years new important results were proved and the research is going 
on, cf. [7].

Recall that the product of modal logics L1, L2 is defined as the logic of the class of products of their 
Kripke frames

L1 × L2 = Log
(
{F1 × F2 | F1 � L1, F2 � L2}

)
,

and the frame F1 × F2 inherits the horizontal relations from F1 and the vertical relations from F2.
On the one hand, this definition is quite natural, and in some cases products can be simply axiomatized 

and have nice properties.
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On the other hand, the product operation has some peculiarities.
First, products are always Kripke complete. However, Kripke semantics sometimes may be inadequate. 

This means that different logics L1, L′
1 can have the same frames; in that case L1 ×L2 = L′

1 ×L2 for any L2

– which looks strange.
Second, the product operation is not logically invariant: it may happen that for some frames Log(F) =

Log(F′), while Log(F × G) �= Log(F′ × G). Note that on the contrary, logical invariance holds for direct 
products of classical models: Th(M) = Th(M ′) implies Th(M × N) = Th(M ′ × N) (A. Mostowski, 1952; 
cf. [8, Theorem 19]).

Third, the product of consistent logics L1 and L2 may be inconsistent. This happens if L1 does not have 
frames (which is possible in the polymodal case, cf. [10], [5, p. 55]).

To amend the situation, one can try to define products of general frames or, equivalently, modal algebras. 
The following problem was mentioned in [7, p. 877]:

There are several attempts for extending the product construction from Kripke complete logics to arbitrary 
modal logics, mainly by considering product-like constructions on Kripke models. All the suggested methods 
so far result in sets of formulas that are not closed under the rule of Substitution.

Nevertheless, a possible answer was already known by that time: it was given by Y. Hasimoto who 
introduced so called shifted products of general frames and modal algebras [6]. In the present paper we 
revisit this operation. We call it the tensor product, since it acts exactly as tensor multiplication on the 
Boolean parts of modal algebras (regarded as Boolean rings). These shifted (tensor) products are known to 
be logically invariant and enjoy other nice properties [6].

The paper is organized as follows. Section 2 contains some basic definitions from modal logic. The 
correlation between modal products of frames and tensor products of Boolean algebras is established in 
Section 3. Section 4 recalls some basic properties of tensor products stated in [6]. In Section 5 we propose 
a filtration technique for Kripke models over tensor products and obtain some decidability results.

2. Preliminaries

We assume that the reader is familiar with basic notions in modal logic (see e.g. [1,4]). We recall some 
of them, mainly for the sake of notation.

An n-modal algebra is a Boolean algebra with additional unary operations ♦1, . . . , ♦n (modalities) such 
that ♦i0 = 0 and ♦i(x ∨ y) = ♦ix ∨ ♦iy for all i (if n = 1, we omit the subscript ‘1’). Fix a countable set 
of propositional variables PV = {p1, p2, . . .}; MLn denotes the set of all n-modal formulas, i.e., terms over 
PV in the signature of n-modal algebras.

The notation A � ϕ means that a formula ϕ is valid in an algebra A, i.e., ϕ = 1 is true in A under any 
assignment of propositional variables; ϕ is valid in a class of algebras A (in symbols, A � ϕ) if it is valid 
in every algebra from A. The set of all formulas valid in an algebra A is called the logic of A and denoted 
by Log(A). For a set of formulas Ψ , a Ψ -algebra is an algebra A validating all formulas from Ψ (in symbols, 
A � Ψ).

Normal propositional n-modal logics can be defined syntactically or alternatively, as logics of n-modal 
algebras [1].

A Kripke n-frame is a tuple F = (W, R1, . . . , Rn), where Ri are binary relations on a nonempty set W . The 
modal algebra of F (denoted by MA(F)) is obtained from the Boolean algebra 2W of all subsets of a set W by 
expansion with the operations R−1

i , i = 1, . . . , n such that for any set U ⊆ W , R−1
i (U) := {y | ∃x ∈ U yRix}; 

cf. [1]. The logic of F (in symbols, Log(F)) can be defined as Log(MA(F)).
A general n-frame is a tuple F = (W, R1, . . . , Rn, A), where (W, R1, . . . , Rn) is a Kripke frame and A

is a subalgebra of MA(W, R1, . . . , Rn). The logic of A is also called the logic of F and denoted by Log(F). 
A valuation in F is a valuation in A, i.e., a map PV −→ A.
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A pair M = (F, θ), where θ is a valuation in F, is called a (Kripke) model over F. ‖ϕ‖M denotes the value 
of a modal formula ϕ in A under θ. The notation M, x � ϕ means x ∈ ‖ϕ‖M, so in particular

M, x � ♦iϕ ⇔ ∃y(xRiy & M, y � ϕ).

A formula ϕ is called true in M if ‖ϕ‖M = W ; thus ϕ is valid in F if it is true in all models over F.
Note that a Kripke frame F can be identified with the general frame (F, MA(F)), and thus for any general 

frame (F, A), Log(F) ⊆ Log(F, A).
For a logic L let Fr(L), Frfin(L), GFr(L) and Alg(L) be the classes of all Kripke L-frames, finite L-frames, 

general L-frames and L-algebras respectively.
For a class of n-modal algebras C, the logic of C is defined as 

⋂
A∈C

Log(A) and denoted by Log(C); 
similarly for classes of Kripke frames or general Kripke frames. Logics of Kripke frames are called Kripke 
complete. Note that L is Kripke complete iff L = Log(Fr(L)).

The product (in our terminology, the modal product) of Kripke frames F1, F2 is denoted by F1×F2. Recall 
its definition for 1-frames Fi = (Wi, Ri):

F1 × F2 = (W1 ×W2, R
×
1 , R

×
2 ),

where
(w1, w2)R×

1 (v1, v2) ⇔ w1R1v1 & w2 = v2,

(w1, w2)R×
2 (v1, v2) ⇔ w1 = v1 & w2R2v2.

For classes of Kripke frames F, G,

F×G := {F × G | F ∈ F, G ∈ G}.

For logics L1, L2,

L1 × L2 := Log
(
Fr(L1) × Fr(L2)

)
, L1 ×fin L2 := Log

(
Frfin(L1) × Frfin(L2)

)
.

A logic L has the finite model property (fmp, for short) if L is the logic of a class of finite frames, or 
equivalently L = Log(Frfin(L)). A logic L1 × L2 has the product fmp if L1 × L2 = L1 ×fin L2.

3. Tensor products and chequered valuations

It is well known that every Boolean algebra can be regarded as a Boolean ring, where the ring multipli-
cation is the meet and the ring addition is the symmetric difference:

xy := x ∧ y, x + y := (x ∧ ¬y) ∨ (y ∧ ¬x).

A Boolean ring is a commutative associative algebra over the two-element field F2 with an idempotent 
multiplication; so the standard construction of a tensor product of associative algebras is applicable here [9].

Viz., the tensor product of algebras A, B is a pair (A ⊗B, π), where A ⊗B is an algebra, π : (a, b) �→ a ⊗b

is a bilinear map A ×B −→ A ⊗B with the following universal property: every bilinear map f : A ×B −→ C, 
where C is an F2-space, uniquely factors through π, i.e., f = g · π for a unique linear g : A ⊗B −→ C.

Note that in the case of vector spaces over F2 the linearity is expressed by the condition g(a + b) =
g(a) + g(b), and the bilinearity of π means π(a + b, c) = π(a, c) + π(b, c), π(a, b + c) = π(a, b) + π(a, c).

The elements of the form a ⊗ b linearly generate A ⊗ B; in our case this means that every element of 
A ⊗B can be presented as a sum a1 ⊗ b1 + . . . + an ⊗ bn.

The multiplication in A ⊗B is defined in such a way that

(a⊗ b)(c⊗ d) = ac⊗ bd.



D. Gabbay et al. / Journal of Applied Logic 12 (2014) 570–583 573
Proposition 3.1. The tensor product of Boolean rings is a Boolean ring.

For the proof note that in A ⊗B we have (a ⊗ b)2 = a2 ⊗ b2 = a ⊗ b and (c1 + . . . + cn)2 = c21 + . . . + c2n.

Our aim is to define tensor products of modal algebras. To this end, let us describe the tensor product 
construction for Boolean rings more explicitly.

Definition 3.2. A set U × V , where U ⊆ X, V ⊆ Y , is called a rectangle in X × Y . A chequered subset of 
X × Y is a finite union of rectangles.

Proposition 3.3. The set of all chequered subsets of W1 ×W2 is a Boolean subalgebra of 2W1×W2 . Moreover, 
if Ai is a subalgebra of 2Wi , i = 1, 2, then the set of all finite unions of rectangles V1 × V2, where Vi ∈ Ai, 
is also a Boolean subalgebra of 2W1×W2 .

Proof. First note that the complement of a rectangle is chequered:

(W1 ×W2) − (V1 × V2) =
(
W1 × (W2 − V2)

)
∪
(
(W1 − V1) ×W2

)
.

Next, note that the intersection of two rectangles is a rectangle:

(V1 × V2) ∩ (U1 × U2) = (V1 ∩ U1) × (V2 ∩ U2).

Hence by distributivity the intersection of chequered subsets is chequered, and thus by De Morgan’s law 
the complement of a chequered subset is chequered.

The above argument goes through also for the case of subalgebras of 2Wi . �
For nonempty sets X, Y let ch(X, Y ) be the Boolean algebra of all chequered subsets of X × Y . There is 

a canonical map π : 2X × 2Y −→ ch(X, Y ) such that π(U, V ) = U × V .

Theorem 3.4. Let X, Y be nonempty sets. Then (ch(X, Y ), π) is a tensor product of 2X and 2Y . Moreover, 
let A, B be subalgebras of 2X , 2Y respectively, chAB(X, Y ) the Boolean algebra of finite unions of rectangles 
U × V , where U ∈ A, V ∈ B. Then (chAB(X, Y ), π|(A × B)) is a tensor product of Boolean algebras A
and B.

Therefore in the algebra chAB(X, Y ) = A ⊗B every element U ⊗ V is just the rectangle U × V .

Proof. One can easily check that π is bilinear. E.g., for the symmetric difference +, we have

π(V1 + V2, U) = (V1 + V2) × U = (V1 × U) + (V2 × U) = π(V1, U) + π(V2, U).

To show the universal property of π we need some more definitions and lemmas.
Suppose ∼1 and ∼2 are equivalence relations on X and Y respectively, such that the quotient sets X/∼1

and Y/∼2 are finite. Then the pair (∼1, ∼2) is called a granulation on X × Y . It is associated with the 
following equivalence relation ∼ on X × Y :

(x, y) ∼
(
x′, y′

)
:= x ∼1 x′ & y ∼2 y′;

its equivalence classes are called granules. Note that granules are rectangles in X × Y . A chequered set is 
absorbed by a granulation if it is a union of granules.
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Lemma 3.5. Every chequered set is absorbed by some granulation. Moreover, if S =
⋃

i∈I ri, I is finite, 
ri = Ui × Vi, Ui ∈ A, Vi ∈ B, then S is a disjoint union of a finite set of rectangles U × V , where U ∈ A, 
V ∈ B.

Proof. Consider the following equivalence relations on X and Y :

x ∼1 x′ := ∀i ∈ I
(
x ∈ Ui ⇔ x′ ∈ Ui

)
;

y ∼2 y′ := ∀i ∈ I
(
y ∈ Vi ⇔ y′ ∈ Vi

)
.

Since I is finite, X/∼1 and Y/∼2 are finite. Note that X/∼1 ⊆ A, Y/∼2 ⊆ B. Let ∼ be the corre-
sponding granulation. Let (x, y)∼ denote the granule of (x, y). If (x, y) ∈ ri then (x, y)∼ ⊆ ri; thus 
ri =

⋃
(x,y)∈ri

(x, y)∼. �
Now for a bilinear f : A × B −→ C let us show that there exists a unique linear g : chAB(X, Y ) −→ C

such that f = g · π.
1. Uniqueness. By Lemma 3.5, any chequered set is a disjoint union (and so a sum) of rectangles. Thus if 

two linear maps coincide on rectangles, they must be equal, i.e., g1(π(U, V )) = g2(π(U, V )) implies g1 = g2.
2. Existence. Suppose a granulation ∼ absorbs a chequered set S. Put

g∼(S) :=
∑{

f̄(r)
∣∣ r ∈ (X × Y )/∼, r ⊆ S

}
,

where f̄(U × V ) = f(U, V ). Let us show that g∼(S) does not depend on the choice of ∼.

Lemma 3.6. If ∼ absorbs a rectangle U × V , then

f(U, V ) =
∑{

f
(
U ′, V ′) ∣∣ U ′ ∈ U/∼1, V ′ ∈ V/∼2

}
.

Proof. Let U/∼1 = {U1, . . . , Un}, V/∼2 = {V1, . . . , Vm}. Then U =
∑

Ui, V =
∑

Vj , and by bilinearity,

f(U, V ) =
∑

i,j

f(Ui, Vj). �

A granulation induced by (≈1, ≈2) is finer than a granulation induced by (∼1, ∼2), if ∼1⊇≈1 and ∼2⊇≈2.

Lemma 3.7. If ≈ is finer than ∼, then g≈(S) = g∼(S).

Proof. ≈ absorbs every ∼-granule r, so

f̄(r) =
∑{

f̄
(
r′
) ∣∣ r′ ⊆ r, r′ is a ≈-granule

}
.

Hence by Lemma 3.6,
∑{

f̄(r)
∣∣ r ⊆ S, r is a ∼-granule

}
=

∑{
f̄
(
r′
) ∣∣ r′ ⊆ S, r′ is a ≈-granule

}
. �

Now given a granulation ∼ induced by (∼1, ∼2) and a granulation ∼′ induced by (∼′
1, ∼′

2), consider the 
granulation ≈ induced by (∼1 ∩ ∼′

1, ∼2 ∩ ∼′
2). Then by Lemma 3.7 g∼(S) = g≈(S) = g∼′(S).

It follows that g∼(S) does not depend on ∼, so we can define g(S) as g∼(S) for any ∼ absorbing S. To 
check that g is linear, consider chequered sets S1 an S2. Let ∼ be a granulation absorbing them and let

Gi := {r | r ⊆ Si, r is a ∼-granule},
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i = 1, 2. Then S1 + S2 =
∑

{r | r ∈ G1 + G2}. On the other hand,

g(S1) + g(S2) =
∑

r∈G1

f̄(r) +
∑

r∈G2

f̄(r) =
∑

r∈G1+G2

f̄(r) +
∑

r∈G1∩G2

(
f̄(r) + f̄(r)

)

=
∑

r∈G1+G2

f̄(r) = g(S1 + S2). �

Proposition 3.8. Consider Kripke frames F1 = (W1, R1), F2 = (W2, R2) and their product F1 × F2 =
(W1 ×W2, R

×
1 , R

×
2 ). Then

(1) for any rectangle U × V we have

R×
1
−1(U × V ) = R−1

1 (U) × V, R×
2
−1(U × V ) = U ×R−1

2 (V );

(2) if (F1, A1) and (F2, A2) are general 1-frames, then (F1×F2, A1⊗A2) is a general 2-frame. In particular, 
(F1 × F2, ch(W1, W2)) is a general 2-frame.

Proof. (1) readily follows from the definition of R×
1 , R

×
2 . (2) follows from (1) and Theorem 3.4: A1 ⊗ A2

consists of finite unions of rectangles, so it is closed under R×
1
−1

, R×
2
−1. �

Definition 3.9. The frame (F1 × F2, A1 ⊗ A2) is called the tensor product of general frames (F1, A1) and 
(F2, A2):

(F1, A1) ⊗ (F2, A2) := (F1 × F2, A1 ⊗A2).

In particular, the tensor product of Kripke frames F1 = (W1, R1), F2 = (W2, R2) is

F1 ⊗ F2 :=
(
F1 × F2, ch(W1,W2)

)
.

Tensor products of Kripke frames are also called chequered frames.

Theorem 3.10. If (A1, ♦1), (A2, ♦2) are normal 1-modal algebras, then there exists a unique 2-modal algebra 
structure on A1 ⊗A2 with diamond operations ♦×

1 , ♦×
2 such that for any a ∈ A1, b ∈ A2

♦×
1 (a⊗ b) = ♦1a⊗ b, ♦×

2 (a⊗ b) = a⊗ ♦2b. (∗)

Proof. Due to the Jónsson–Tarski representation theorem [1, Theorem 8.24], each Ai can be identified with 
an algebra of a general frame; then ♦i = R−1

i . The operations ♦×
i are described by Proposition 3.8(1). Since 

a ⊗ b = a × b (Theorem 3.4), we obtain (∗).
It remains to note that (∗) defines unique diamond operations on A1 ⊗A2, since every element is a sum 

of rectangles a ⊗ b. �
For classes of algebras (general frames) A, B, put

A⊗B := {A⊗B | A ∈ A, B ∈ B}.

Definition 3.11. The tensor product of logics L1 and L2 is the logic

L1 ⊗ L2 := Log
(
Alg(L1) ⊗ Alg(L2)

)
.
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Since every modal algebra is an algebra of a general frame, we have

L1 ⊗ L2 = Log
(
GFr(L1) ⊗ GFr(L2)

)
.

The next propositions readily follow from this definition.

Proposition 3.12. L1 ⊗ L2 is consistent iff L1 and L2 are consistent.

Proposition 3.13. If L1 and L2 are consistent, then L1 ⊗ L2 is conservative over L1 and L2.

Proposition 3.14. If L1 ⊗ L2 is consistent and Kripke complete, then L1 and L2 are Kripke complete.

4. Logical invariance

This section contains some important basic properties of tensor products. The results of this section were 
obtained in [6].

Theorem 4.1. Suppose A, A′, B, B′ are classes of 1-modal algebras and Log(A) = Log(A′), Log(B) =
Log(B′). Then Log(A ⊗B) = Log(A′ ⊗B′).

Proof. By a straightforward argument, for any 1-modal algebras A, A′, B, B′ we have: if A ∈ HSP(A′), then 
A ⊗B ∈ HSP(A′ ⊗B); if B ∈ HSP(B′), then A ⊗B ∈ HSP(A ⊗B′), see [6] for more details.

Now we can show that Log(A) ⊆ Log(A′) only if Log(A ⊗B) ⊆ Log(A′⊗B). In fact, by Birkhoff’s theorem, 
Log(A) ⊆ Log(A′) implies A′ ⊆ HSP(A), so A′ ⊗B ⊆ HSP(A ⊗B); hence Log(A ⊗B) ⊆ Log(A′ ⊗B).

Thus Log(A) = Log(A′) implies Log(A ⊗ B) = Log(A′ ⊗ B), and similarly Log(B) = Log(B′) implies 
Log(A′ ⊗B) = Log(A′ ⊗B′). �
Corollary 4.2. Let C1, C2 be classes of 1-modal algebras or general frames, L1 = Log(C1), L2 = Log(C2). 
Then L1⊗L2 = Log(C1⊗C2). In particular, if L1 and L2 are Kripke complete then for any classes of Kripke 
frames F1, F2 such that Li = Log(Fi), i = 1, 2, we have that L1 ⊗ L2 = Log(F1 ⊗ F2) is a logic of a class of 
chequered frames.

FL denotes the canonical frame of a consistent logic L, and (FL, AL) denotes its general canonical frame [1]. 
It is well known that L = Log(FL, AL). Hence we obtain

Corollary 4.3. For any consistent L1, L2,

L1 ⊗ L2 = Log
(
(FL1 , AL1) ⊗ (FL2 , AL2)

)
.

Recall that a logic L is called canonical if L = Log(FL).

Corollary 4.4. If L1, L2 are canonical, then

L1 ⊗ L2 = Log(FL1 ⊗ FL2).

Proposition 4.5. ch(X, Y ) = 2X×Y iff X or Y is finite.

Proof. Suppose X is finite. Every Z ⊆ X × Y can be presented as 
⋃

x∈X(({x} × Y ) ∩ Z). Since every set 
({x} × Y ) ∩ Z is a rectangle, it follows that Z is chequered. �
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Corollary 4.6. If L1, L2 are Kripke complete, then

L1 × L2 ⊆ L1 ⊗ L2 ⊆ L1 ×fin L2.

Proof. By completeness we have Li = Log(GFr(Li)) = Log(Fr(Li)); hence by Theorem 4.1, L1 ⊗ L2 =
Log(GFr(L1) ⊗GFr(L2)) = Log(Fr(L1) ⊗Fr(L2)). The latter logic contains L1 ×L2 = Log(Fr(L1) ×Fr(L2)), 
since Fr(L1) ⊗ Fr(L2) consists of (some) general frames over frames from Fr(L1) × Fr(L2).

Next, by Proposition 4.5 we can identify Frfin(L1) ×Frfin(L2) with Frfin(L1) ⊗Frfin(L2). Thus L1 ⊗L2 =
Log(Fr(L1) ⊗ Fr(L2)) ⊆ Log(Frfin(L1) ⊗ Frfin(L2)) = Log(Frfin(L1) × Frfin(L2)) = L1 ×fin L2. �
Corollary 4.7. Let L1, L2 be Kripke complete logics. L1 × L2 has the product fmp iff

L1 × L2 = L1 ⊗ L2 = L1 ×fin L2;

it follows that if L1 × L2 has the product fmp, then for any Fi such that Li = Log(Fi), i = 1, 2, we have

L1 × L2 = Log(F1 × F2).

Corollary 4.8. If L1 and L2 have the fmp, then

L1 ⊗ L2 = L1 ×fin L2,

L1 × L2 has the product fmp iff L1 × L2 = L1 ⊗ L2.

It follows from Theorem 4.1 that usually modal and tensor products lead to different logics. In fact, 
modal products of logics with the fmp in many cases do not have the product fmp [4]. Rare exceptions 
are K × K and S5 × S5 having the product fmp [3,4]. Also, K × K = [K, K], where [L1, L2] denotes the 
commutator of L1 and L2 [4, p. 378].

Corollary 4.9. [L1, L2] ⊆ L1 ⊗ L2.

Proof. By Proposition 3.13, L1⊗L2 contains the fusion of L1 and L2. Also, L1 ⊗ L2 contains K ⊗K = [K, K], 
so it contains the commutativity and confluence axioms of the commutator. (Note that for the case of Kripke 
complete logics this follows from the Corollary 4.6 by well-know inclusion [L1, L2] ⊆ L1 × L2.) �
5. Filtrations of chequered models

Recall the standard definition of filtrations of Kripke models (see e.g. [5, Part I, Section 4]).

Definition 5.1. Let M = (W, R, θ) be a Kripke model, Φ a set of formulas.
Consider the equivalence relation ∼Φ on W :

∼Φ:=
{(

x, x′) ∣∣ ∀ϕ ∈ Φ
(
M, x � ϕ ⇔ M, x′ � ϕ

)}
.

Let [x] be the equivalence class of x w.r.t. ∼Φ. Consider relations Rmin and Rmax on the quotient set 
W/∼Φ:

Rmin :=
{(

[x], [y]
) ∣∣ ∃x′ ∈ [x] ∃y′ ∈ [y] x′Ry′

}
,

Rmax :=
{(

[x], [y]
) ∣∣ ∀ϕ(♦ϕ ∈ Φ & M, y � ϕ ⇒ M, x � ♦ϕ)

}
.
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They are called the minimal and the maximal filtrating relations. A model

M̄ = (W/∼Φ, R̄, θ̄)

is called a filtration of M through Φ if for any p ∈ Φ

θ̄(p) =
{
[x]

∣∣ M, x � p
}
,

and

Rmin ⊆ R̄ ⊆ Rmax.

For models M1, M2, the notation M1, x ∼Φ M2, y means

∀ϕ ∈ Φ (M1, x � ϕ ⇔ M2, y � ϕ).

Lemma 5.2 (Filtration Lemma). (See [5].) Consider a set of formulas Φ closed under subformulas. If M̄ is 
a filtration of M through Φ, then for any x in M

M, x ∼Φ M̄, [x].

Definition 5.3. (See [2].) A logic L admits filtration if it is Kripke complete and for any L-frame (W, R), 
for any model M = (W, R, θ), and for any finite set of formulas Φ closed under subformulas, there exists a 
filtration (W̄ , R̄, θ̄) of M through Φ such that (W̄ , R̄) is an L-frame.

It is well known that many logics admit filtration; in particular, this is true for every logic axiomatized 
by some of the axioms

�p → ��p, �p → p, ♦�p → p, �p → ♦p, ♦p → ♦♦p

[2,5]. So all the logics K, K4, T, S4, S5 admit filtration.
It follows that if a logic L admits filtration, then it has the fmp. Moreover, to check the L-satisfiability of a 

formula ϕ, it is sufficient to consider L-frames of cardinality at most 2#ϕ, where #ϕ denotes the cardinality 
of the set sub(ϕ) of all subformulas of ϕ. Our aim is to formulate an analogous result for chequered frames.

Definition 5.4. Consider Kripke frames F1, F2, Fi = (Wi, Ri), a model M = (F1 × F2, θ), and a set of 
formulas Φ. Consider relations ∼i on Wi:

∼1 :=
{(

x, x′) ∣∣ (x, y) ∼Φ

(
x′, y

)
for all y ∈ W2

}
;

∼2 :=
{(

y, y′
) ∣∣ (x, y) ∼Φ

(
x, y′

)
for all x ∈ W1

}
.

The pair (∼1, ∼2) is called the Φ-granulation of M.

Obviously, ∼i is an equivalence relation on Wi.

Proposition 5.5. Consider a model

M =
(
(W1, R1) ⊗ (W2, R2), θ

)
,

a finite set of formulas Φ, and the Φ-granulation (∼1, ∼2). Then the quotient sets W1/∼1 and W2/∼2 are 
finite (i.e., a Φ-granulation is really a granulation).
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Proof. The value ‖ϕ‖M of a formula ϕ in M is a union of a finite set Xϕ of rectangles, i.e., ‖ϕ‖M =
⋃

Xϕ.
Let (≡1, ≡2) be a granulation absorbing the chequered set X (Lemma 3.5). Let us show that ≡i ⊆ ∼i

for i = 1, 2. Since x ≡1 x′, for any y, (x, y) and (x, y′) are in the same granule, and thus for any ϕ, they are 
in the same rectangles from Xϕ. So for any ϕ,

(x, y) ∈ ‖ϕ‖M iff
(
x′, y

)
∈ ‖ϕ‖M ,

which means (x, y) ∼Φ (x′, y).
Since W1/≡1 and W2/≡2 are finite, the quotient sets W1/∼1 and W2/∼2 are also finite. �

Proposition 5.6. Suppose L admits filtration, F, G are Kripke frames, F � L, ϕ is true at some point in a 
chequered model M = (F ⊗ G, θ), (∼1, ∼2) is the sub(ϕ)-granulation of M. Then there exists a Kripke frame 
F̄ such that F̄ � L, ϕ is satisfiable in F̄ × G, and the cardinality of F̄ is not greater than

2#ϕ·|W2/∼2|.

Proof. Let F = (H, R), G = (V, S). By Proposition 5.5, H/∼1 and V/∼2 are finite. Suppose H/∼1 =
{H1, . . . , Hh}, V/∼2 = {V1, . . . , Vv}.

Let ϕ be a formula in variables p1, . . . , pm, Φ = sub(ϕ), and let ♦2ψ1, . . . , ♦2ψk be all subformulas of ϕ
of the form ♦2ψ.

Fix fresh variables q1, . . . , qk, qi1, . . . , qik, pi1, . . . , pim, 1 ≤ i ≤ v. Consider the translation g : Φ −→ ML1, 
preserving propositional variables, the Boolean connectives, ♦1, and such that g(♦2ψj) := qj , 1 ≤ j ≤ k. 
For 1 ≤ i ≤ v and for any formula ψ(p1, . . . , pm) ∈ ML1, put

fi(ψ) :=
[
qi1, . . . , q

i
k, p

i
1, . . . , p

i
m/q1, . . . , qk, p1, . . . , pm

]
ψ.

Thus all subformulas of ϕ beginning with ♦2 are replaced with fresh variables, and then all variables are 
renamed differently for all horizontal levels (“floors”) i.

Now, fix points yi ∈ Vi, and consider a model N = (F, η), where

η
(
pij
)

:=
{
x
∣∣ M, (x, yi) � pj

}
, (1)

η
(
qij
)

:=
{
x
∣∣ M, (x, yi) � ♦2ψj

}
. (2)

Claim 1. For all x ∈ H, 1 ≤ i ≤ v, ψ ∈ Φ,

M, (x, yi) � ψ ⇔ N, x � fi(g(ψ)). (3)

By induction on the length of ψ. If ψ is a variable, then ψ = pj for some 1 ≤ j ≤ m and fi(g(ψ)) = pij ; 
in this case (3) follows from (1). If ψ is of the form ♦2ξ then ψ = ♦2ψj for some 1 ≤ j ≤ k and 
fi(g(ψ)) = qij , so (3) follows from (2). The cases of Boolean connectives and ♦1 follows readily from the 
IH.
Put

Ψ :=
⋃

1≤i≤v

{
fi
(
g(ψ)

) ∣∣ ψ ∈ Φ
}
.

Note that if α is a subformula of some formula fi(g(ψ)) from Ψ , then α = fi(g(ψ′)), where ψ′ is a 
subformula of ψ, thus ψ′ ∈ Φ. It follows that Ψ is closed under subformulas.
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Claim 2. For all x, x′ ∈ H,

x ∼1 x′ ⇔ N, x ∼Ψ N, x′.

Suppose x ∼1 x′, i.e., for all y in V M, (x, y) ∼Φ M, (x′, y), and let α ∈ Ψ . Then α = fi(g(ψ)) for some 
ψ ∈ Φ, 1 ≤ i ≤ v. By Claim 1,

N, x � α ⇔ M, (x, yi) � ψ, M,
(
x′, yi

)
� ψ ⇔ N, x′ � α,

so N, x � α ⇔ N, x′ � α. It follows that N, x ∼Ψ N, x′.
The other way round, if x �1 x′, then M, (x, y) �Φ M, (x′, y) for some y ∈ V . Let y ∈ Vi, i.e., y ∼2 yi; then 
in M we have (x, y) ∼Φ (x, yi), (x′, y) ∼Φ (x′, yi), hence, (x, yi) �Φ (x′, yi). Therefore, for some ψ ∈ Φ

the equivalence M, (x, yi) � ψ ⇔ M, (x′, yi) � ψ does not hold. Then by Claim 1 N, x � fi(g(ψ)) �

N, x′ � fi(g(ψ)), which means that N, x �Ψ N, x′.

Since L admits filtration, there exists a filtration N̄ = (H̄, R̄, η̄) of N through Ψ such that (H̄, R̄) � L. By 
Claim 2, H̄ = H/∼1 = {H1, . . . , Hh}.

Put F̄ := (H̄, R̄). Let [x] denote the ∼1-class of x. Consider a valuation θ̄ on the Kripke frame F̄×G such 
that ([x], y) ∈ θ̄(p) ⇔ (x, y) ∈ θ(p) for all p ∈ Φ, y ∈ V (recall that if x ∼1 x′ then (x, y) ∈ θ(p) ⇔ (x′, y) ∈
θ(p), so θ̄ is well-defined).

Claim 3. For any (x, y) ∈ W , ψ ∈ Φ

M, (x, y) � ψ ⇔ (F̄ × G, θ̄),
(
[x], y

)
� ψ.

By induction on the length of ψ. Consider the only non-trivial case ψ = ♦1ξ.
If M, (x, y) � ♦1ξ then M, (x′, y) � ξ and xRx′ for some x′. By Definition 5.1 we have [x]R̄[x′]. By the 
induction hypothesis,

(F̄ × G, θ̄),
([
x′], y

)
� ξ,

that is

(F̄ × G, θ̄),
(
[x], y

)
� ♦1ξ.

The proof in the opposite direction is more interesting. Suppose (F̄ × G, θ̄), ([x], y) � ♦1ξ. Then [x]R̄[x′]
and (F̄ × G, θ̄), ([x′], y) � ξ for some x′. By the induction hypothesis, M, (x′, y) � ξ. Then y ∼2 yi for 
some i. Therefore, M, (x′, yi) � ξ. By Claim 1, N, x′ � fi(g(ξ)). By Filtration Lemma, N̄, [x′] � fi(g(ξ)). 
Since [x]R̄[x′], we obtain N̄, [x] � ♦1fi(g(ξ)). Now observe that ♦1fi(g(ξ)) = fi(g(♦1ξ)), so using Filtration 
Lemma and Claim 1 again we obtain that M, (x, yi) � ♦1ξ. Since y ∼2 yi, we finally obtain M, (x, y) � ♦1ξ, 
which proves the claim.

To complete the proof of the proposition, it remains to estimate the size h of F̄. Clearly, h ≤ 2|Ψ |. On the 
other hand, |Ψ | = #ϕ · v and v is the number of ∼2-classes. �

Unlike the usual filtration technique, the above proposition does not estimate the size of a countermodel, 
because it gives an upper bound depending on W2/∼2. However, in some cases it implies decidability results 
for tensor and modal products.

Tensor and modal products of Kripke complete logics coincide when one of the logics is tabular:
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Theorem 5.7. If L1 is Kripke complete and L2 is tabular, then

L1 × L2 = L1 ⊗ L2.

Proof. L1 × L2 is complete with respect to the class

C = {F × G | F � L1, G � L2, G is rooted},

see e.g. [4]. If G � L2 and G is rooted, then by the tabularity of L2, G is finite [1]. By Proposition 4.5, all 
frames in the class C are chequered, so L1 × L2 = L1 ⊗ L2. �

Hence we readily obtain the following properties of modal products with tabular logics.

Corollary 5.8. For a class of frames F, and a finite frame G,

Log(F) × Log(G) = Log
(
F× {G}

)
.

Corollary 5.9. If L1 has the fmp and L2 is tabular, then L1 × L2 has the product fmp.

Corollary 5.10. The modal product of tabular logics is tabular: if F and G are finite, then

Log(F) × Log(G) = Log(F × G).

Theorem 5.11. Suppose L2 is tabular. Then:

1. if L1 admits filtration, then L1 × L2 has the exponential product fmp;
2. if L1 is Kripke complete then L1 × L2 is m-reducible to L1; so if L1 is Kripke complete and decidable, 

then L1 × L2 is decidable.

Proof. 1. Suppose L2 = Log(G) for a finite G of size n. By Proposition 5.6, ϕ is L1 × L2-satisfiable iff ϕ is 
satisfiable in a frame F × G, where F � L1 and the size of F is not greater than 2#ϕ·n.

21. Let G = ({1, . . . , n}, S).
Take auxiliary propositional variables pij , 1 ≤ i ≤ n, j ≥ 1. For all i, 1 ≤ i ≤ n, define the translation 

gi : ML2 −→ ML1 preserving the Boolean connectives, ♦1, and such that

gi(pj) := pij , gi(♦2ψ) :=
∨

iSk

gk(ψ).

Now the second statement of the theorem follows from two lemmas.

Lemma 5.12. Suppose M = (F × G, θ) and N = (F, η) are Kripke models such that for all x in F, 1 ≤ i ≤ n, 
j ≥ 1,

M, (x, i) � pj ⇔ N, x � pij . (4)

Then for any ϕ ∈ ML2, x in F, 1 ≤ i ≤ n,

M, (x, i) � ϕ ⇔ N, x � gi(ϕ). (5)

1 The idea of the proof is similar to an argument by D.P. Skvortsov reducing first-order modal logics with finite constant domains 
to propositional modal logics.
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Proof. By induction on the length of ψ. The induction base coincides with (4). The cases of Boolean 
connectives and ♦1 are trivial.

Consider the case ϕ = ♦2ξ. M, (x, i) � ♦2ξ means that for some k with iSk we have M, (x, k) � ξ; by the 
IH, the latter is equivalent to N, x � gk(ξ); thus

M, (x, i) � ϕ iff N, x �
∨

iSk

gk(ξ)
(
= gi(♦2ξ)

)
. �

Lemma 5.13. For any frame F and a formula ϕ ∈ ML2,

ϕ is satisfiable in F × G iff g1(ϕ) ∨ . . . ∨ gn(ϕ) is satisfiable in F.

Thus satisfiability in F × G is m-reducible to satisfiability in F.

Proof. Suppose ϕ is satisfiable in F × G. Then M, (x, i) � ϕ for some i, x in F and a model M based on 
F × G. Consider a model N based on F and satisfying (4). Then by (5) we have N, x � gi(ϕ). Therefore 
g1(ϕ) ∨ . . . ∨ gn(ϕ) is satisfiable in F.

The other way round, if g1(ϕ) ∨ . . . ∨ gn(ϕ) is satisfiable in F, then N, x � gi(ϕ) for some i, x in F and a 
model N based on F. Consider M based on F × G and satisfying (4); then by (5) we obtain M, (x, i) � ϕ, so 
ϕ is satisfiable in F × G. �
6. Conclusion

In this paper we have studied properties of a product-like operation ⊗ on arbitrary (not only Kripke 
complete) modal logics introduced in [6]. We have showed that this operation is correlated with tensor 
products of modal algebras, and proved some completeness and decidability results.

The above considerations can literally be transferred to the polymodal case; in particular, the logical 
invariance also holds for tensor products of polymodal logics. One of the corollaries is the associativity of 
tensor products: indeed, for any frames we have

(
(F1, A1) ⊗ (F2, A2)

)
⊗ (F3, A3) ∼= (F1, A1) ⊗

(
(F2, A2) ⊗ (F3, A3)

)
,

so for any logics we have

(L1 ⊗ L2) ⊗ L3 = L1 ⊗ (L2 ⊗ L3).

Note that the analogous question for modal products of logics is open, see e.g. [7, p. 877].

There are many open questions about tensor products of modal logics. Let us quote some of them.

1. Does Kripke completeness transfer from L1 and L2 to L1 ⊗ L2?
2. Do there exist L1, L2 such that L1 × L2 = L1 ⊗ L2, but L1 × L2 lacks the product fmp and L1, L2 are 

non-tabular?
3. Do there exist L1, L2 such that L1 × L2 is undecidable, but L1 ⊗ L2 is decidable?
4. Do there exist L1, L2 such that L1×L2 is not finitely axiomatizable, but L1⊗L2 is finitely axiomatizable?
5. When the inclusions described in Corollaries 4.6, 4.9 are strict? For some cases, the answer follows from 

Corollaries 4.6, 4.7; in general, this question is open.

Another natural operation on modal algebras is the normal product [6]. For monomodal algebras (A1, ♦1), 
(A2, ♦2), their normal product is defined as the monomodal algebra (A1 ⊗ A2, ♦1 · ♦2). The corresponding 
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binary operation on general frames sends a pair ((F1, A1), (F2, A2)) to (G, A1 ⊗ A2), where G is the direct 
product of F1 and F2 (in the standard model-theoretic sense). Many nice properties of normal products 
(including logical invariance) were proved in [6]. Also note that in [6] tensor (‘shifted’) products were 
defined in an equivalent way via normal products and fusions.
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